

Recommended Dietary Intake/Allowance for Vitamin D Different country has different dietary guidelines

Terminology

Estimated Average Requirement (EAR)

The average daily intake that meets the needs of 50% of healthy individuals in a particular age and gender group

Reference Nutrient Intake (RNI)

- The intake that is sufficient to meet the needs of 97.5% of the population.
- Equivalent concept to that of the RDA or RDI

Adequate Intake (AI)

- It is used when an EAR and RNI cannot be determined due to insufficient evidence.
- A recommended intake level based on observed/experimentally determined approximations of nutrient intake.

Recommendation for vit D intake in selected SEA Countries

Country		0-11 months (µg/d)		1-18 years (µg/d)		
Malaysia (2017 RNI)		*10		15		
Indonesia (2019 RDA)		10		15		
Thailand (2020 DRI)		10		15		
Philippines (2015 DRI)	*Adequ	ate Intake	*5	*5		5
				i years ug/d)	7-18 years (µg/d)	
Singapore (RDA) Health Promotion Board Singapore		10		•	; Girls: 10.5	2.5

The set RDA/RNI assumed that individuals have minimal exposure to sunlight

Dietary Guidelines for Americans (2020-2025)

Soon after birth (0-6 months)

 All infants who are fed human milk exclusively / mixed fed (human milk + infant formula) will need a vit D supplement of 400 IU/d (10 µg/d). Vit D supplement is not needed for infants receiving full feeds of infant formula

Country	6-11 months	12-23 months	2-18 years	
	(μg/d)	(μg/d)	(μg/d)	
US RDA	10	15	15	

Nutrient Requirements in the UK

Scientific Advisory Committee on Nutrition (SACN) for Vit D (2016)

Country	0-11 months	1-3 years	4 year and above	
	(μg/d)	(μg/d)	(μg/d)	
UK (2016 RNI)	Safe intake: 8.5- 10	Safe intake: 8.5- 10	10	

Advice for infants and young children

Babies from birth to 1 year of age should have a daily supplement containing $8.5\,\mu g$ to $10\,\mu g$ of vit D throughout the year if they are:

- Breastfed
- Formula-fed and having less than 500 ml of infant formula/day

Surveillance Data on Habitual Dietary Vit D Intakes

Vit D intake in selected SEA Countries (SEANUTS II)

% not meeting requirements	0.5-0.9 years	1.0 - 3.9 years	4.0-6.9 years	7.0-12.9 years
Malaysia (Poh et al., 2023)	79.4%	91.6%	92.4%	98.5%
Thailand (Pongcharoen et al., 2023)	NA	86.0	92.8	95.8

Habitual vit D intakes in the population are much lower than the recommendations

Supplementation has been repeatedly shown to be effective in improving vit D status.

But, is it a sustainable strategy at community level?

Challenges in Asia

Socioeconomic barriers & compliance

 Access to and compliance with supplementation can be difficult, especially in low-income regions.

Cultural Preferences

· Dietary supplements are not always culturally accepted

European countries residing above 40°N:

UVB availability is insufficient to enable skin synthesis of vit D for ~ 4 to 7 months (autumn & winter)

Sunlight is abundant in many parts of Asia, but.....

- Indoor living
- Societal preferences for fair skin
- Religious attire
- Pollution

Safe sun exposure

- Outdoor physical activity
- · Casual/incidental exposure
- · Important: without sun burning

Exploring the Possibilities of Food Fortification with Vitamin D

Fortification as a sustainable strategy

- Fortification is cost-effective and does not rely on daily compliance as supplements do
 - People naturally consume fortified foods as part of their regular diet

An example of Successful Fortification Program

The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data $^{1-3}$

Tuija Jääskeläines. ^{4,12} Suvi T Ikkones. ^{5,12} Annamuri Landayist. ⁴Maijalissa Erkkola. ⁵Tapani Koskela. ⁶Kaisa Lakkala. Kirston C Dowling. ⁷George El Hall. ⁷Heikik Konger, ⁷Janr Karpjunen. ^{5,12}Eero Kyllönen. ^{6,7}Tomun Härkänen. ⁷Kevin D Cashman, ⁷San Mäustisch, ⁷and Christel Lumberg-Albland ⁷*

Am J Clin Nutr 2017;105:1512-20. Printed in USA. © 2017 American Society for Nutrition

- IV: 1345
 Control: 1053
- 1532 children
- IV: 970 C: 562
- A treatment effect (WMD) of 21.2 nmol/L (95% CI16.2, 26.2) - A treatment errect (WMU) or 21.2 nmo)/L (5)% O 11.6.2, z0 Fortification with vit D3 more effective than vit D2 Effect was grater when baseline 250HD z50 nmo)/L and when fortification dose z10 μ 10 d compared to z10 μ 10 Heterogeneity was high (z12 + 96%, z13 chi-squared z14 or 0.001)

Fortification: Important Factors

· Choosing a suitable food vehicle

Basic commodities

Ingredients of processed foods

Dietary pattern of the country

Economically available for all segments of the population

Fortification: Important Factors

· Determination of the effective fortification dose

Vit D status of the target population

The 25OHD goal concentration that must attained by fortification

The effects of vitamin D-fortified foods on circulating 25(OH)D concentrations in adults: a systematic review and meta-analysis

An average increase of 2 nmol/l increase in 25OHD concentration for every 100 IU vitamin D intake per day

Fortification: Important Factors

· Vit D stability & bioavailability

Stability during processing

· Regulatory compliance

Standardisation

Clinical validation

Effectiveness

Safety

Conclusion

- · Vit D deficiency remains a pressing public health issue in Asia due to factors such as limited sun exposure, dietary habits and lifestyle changes.
- While supplementation has been beneficial in Europe and is recommended for vulnerable groups, it poses challenges in largescale implementation in Asia.

Conclusion

- Food fortification presents a practical and sustainable solution that could effectively address vit D deficiency accross diverse populations.
- A comprehensive strategy combining fortification with public education on safe sun exposure and dietary intake will be essential to tackling this issue in Asia.