

Serving the Mation. Impacting the World

FAKULTI PERUBATAN Faculty of Medicine

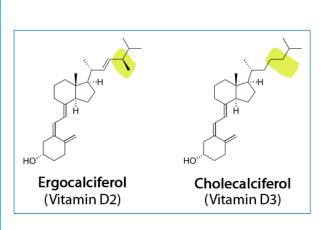
Physiology of Vitamin D Metabolism

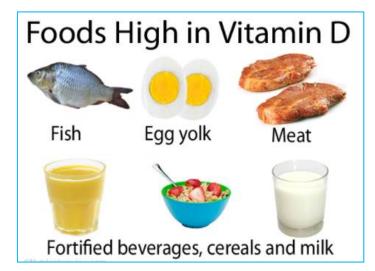
DR MUHAMMAD YAZID JALALUDIN PROFESSOR OF PAEDIATRICS FACULTY OF MEDICINE, UNIVERSITI MALAYA SENIOR CONSULTANT PAEDIATRIC ENDOCRINOLOGIST UNIVERSITY MALAYA MEDICAL CENTRE & UM SPECIALIST CENTRE

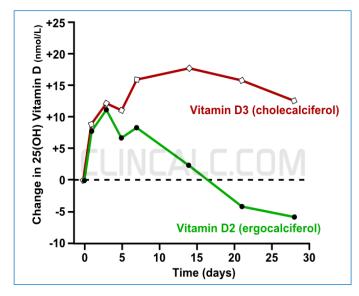
Outlines

Vitamin D: Physiology and Metabolism

- Types of Vitamin D
- Vitamin D: Sources, Synthesis and Metabolism
- Vitamin D Physiology
- Vitamin D: Skeletal & Non-Skeletal Functions
- Vitamin D Status: Insufficiency vs Deficiency
- Risk factors
- Daily Recommendation

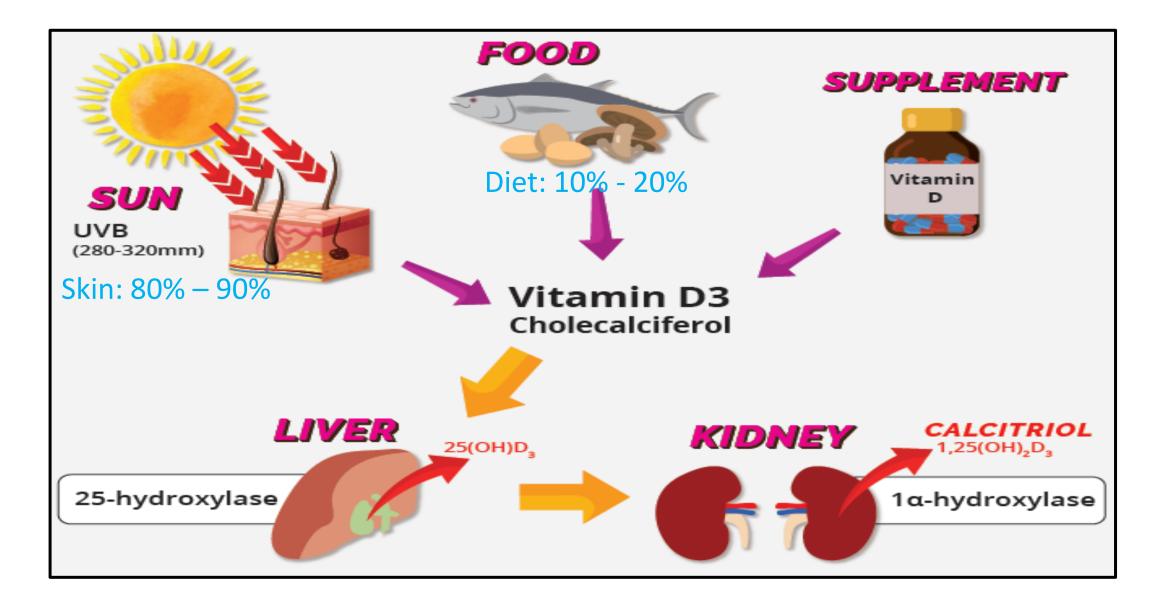

The Types of Vitamin D

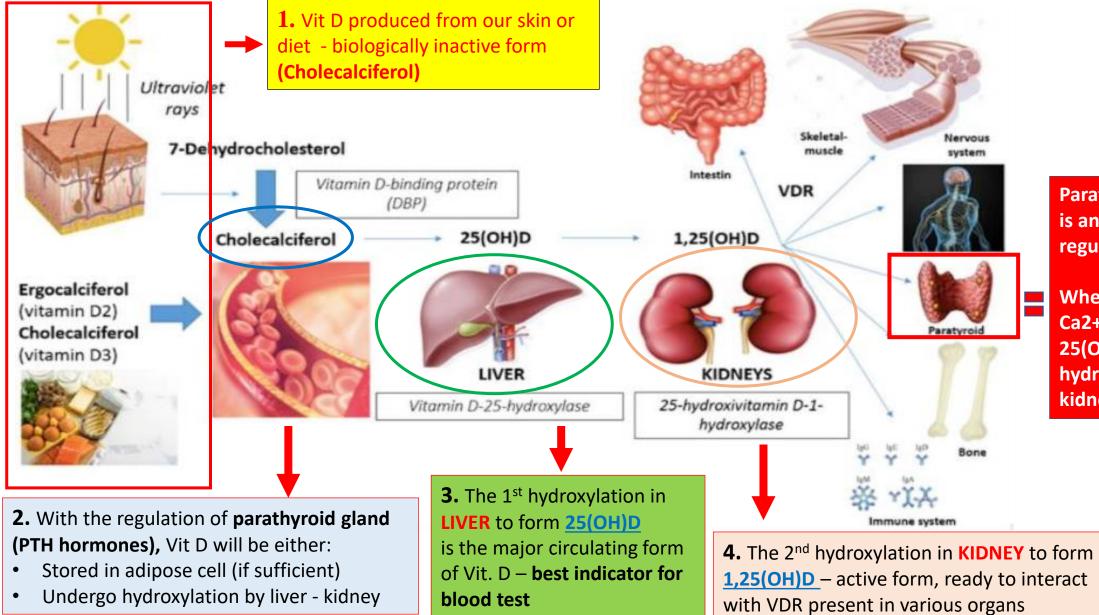

Food with Vitamin D3 (Animal)


• Fish (Salmon), egg yolk, beef, liver etc

Food with Vitamin D2 (Plant)

• Mushroom, milk, cereal etc

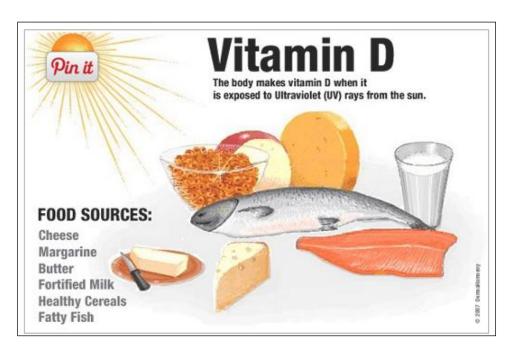



Vitamin D3 appears to be more potent and x3 as effective as vitamin D2.

(D2 is easily broken down and has a shorter shelf life)

Vitamin D: Sources, Synthesis & Metabolism

The Physiology of Vitamin D



Parathyroid gland is an autoregulation of PTH

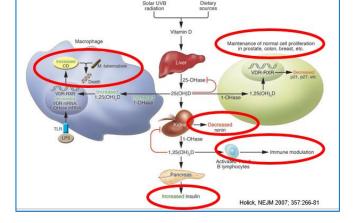
Wherever low in Ca2+ / Vit D, 25(OH)D will be hydroxylated by kidney.

Role of Vitamin D

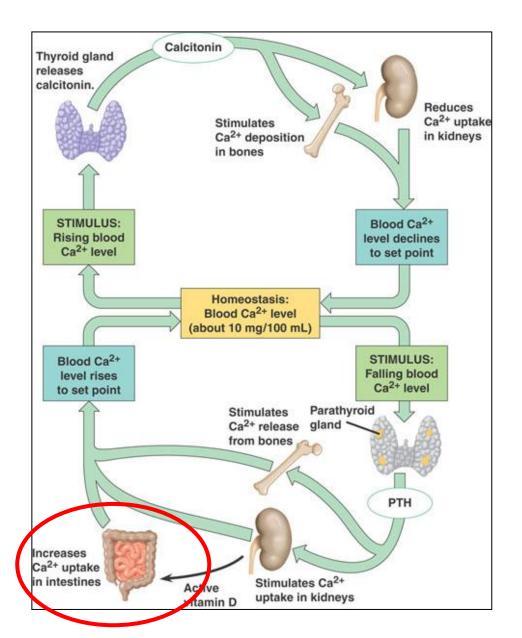
Vitamin D is well recognized as a hormone that affects many of our body's important function.

The Essential role of Vitamin D

1. Musculoskeletal


(bone and muscle health)

 To maintain calcium and phosphate homeostasis

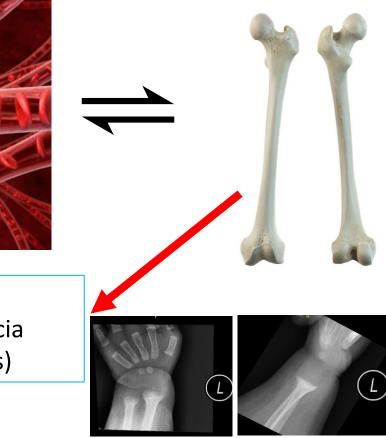


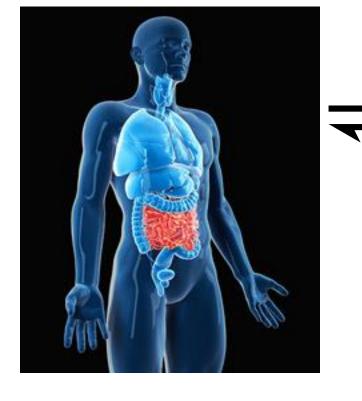
2. Non-skeletal role

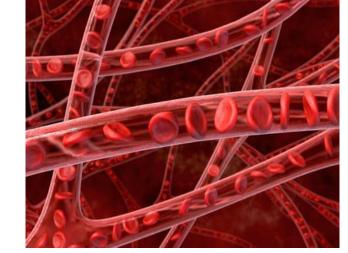
- Immunomodulation
- Cellular proliferation
- Cancer prevention
- Hypertension and CVD
- Insulin production

Significance of Vitamin D: Skeletal Effects

Vitamin D is essential in:

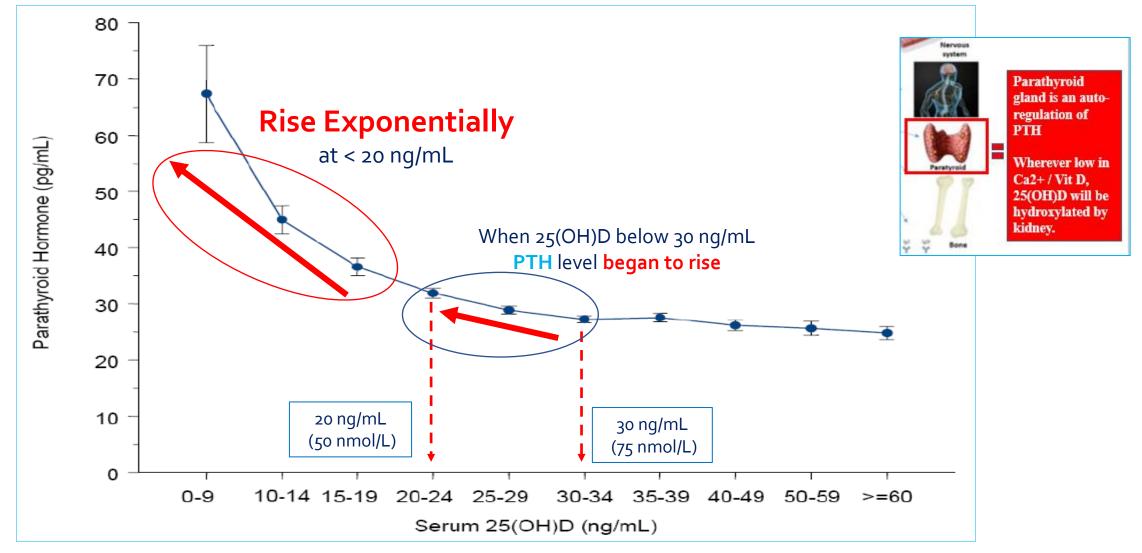

- Promoting calcium and phosphorus absorption in the gut
 - Without vitamin D:
 - 10-15% of dietary calcium
 - 40-60% of phosphorus is absorbed
 - Vitamin D double the efficiency of intestinal calcium and phosphorus absorption.
 - Calcium up to 30-40%
 - Phosphorus up to 80%
- Maintaining adequate circulating serum calcium and phosphate concentrations.


Inter-relation between Vitamin D, Calcium & Bone Health


1,25(OH)2 D个 absorption of dietary calcium is by 2-4 times

Serum calcium maintained at 2.20-2.62 mmol/L

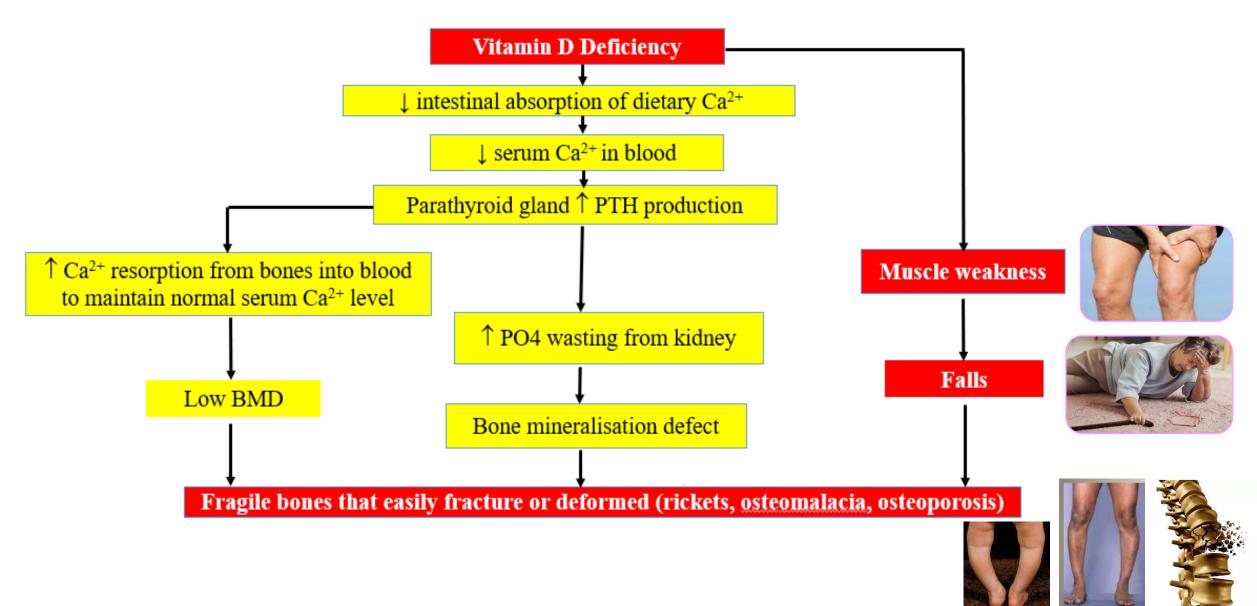
Bones as reservoir for calcium that provides calcium for bood when serum calcium is low

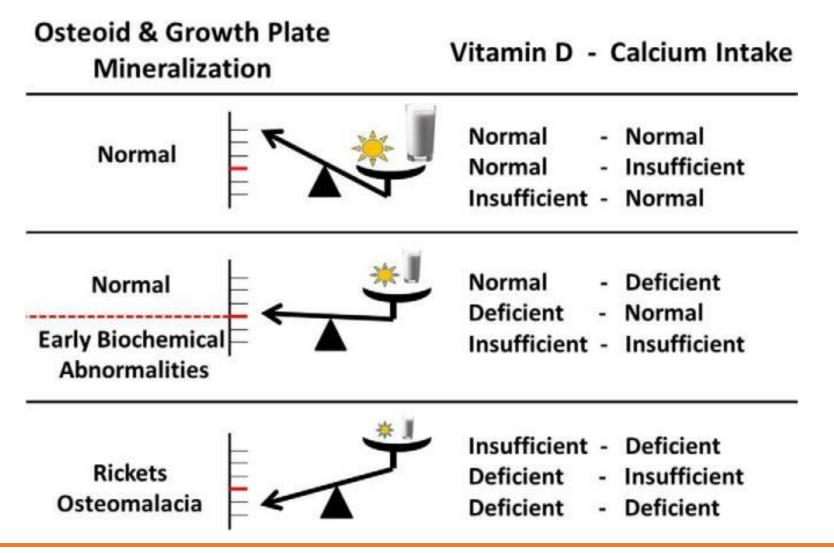


Bone weakness Rickets / osteomalacia (softening of bones)

1,25(OH)2D = 1,25-dihydroxyvitamin D (Active Form of Vit D)

Sufficiency = above 30 ng/mL (75 nmol/L) Insufficiency = between 20 - 30 ng/mL (50-75 nmol/L) Deficiency = below 20 ng/mL (<50 nmol/L)

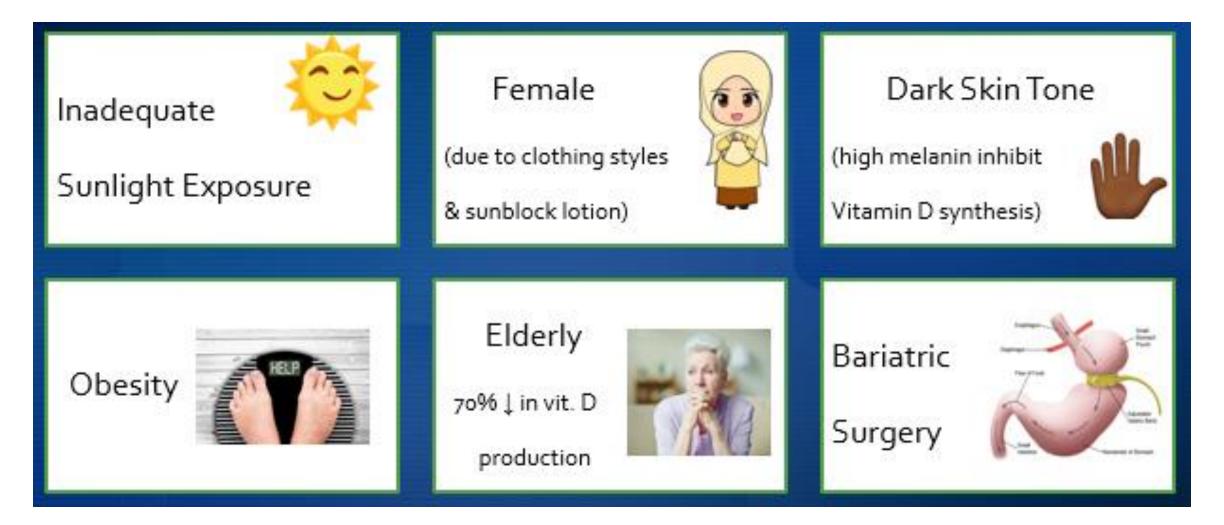

The important relationship between PTH and Serum 25(OH)D



Holick MF. Ann Epidemiol 2009; 19: 73-8.

Pathophysiology of Vitamin D Deficiency in Bone Health

(Ca²⁺, calcium; PTH, parathyroid hormone; BMD, bone mineral density; PO4, phosphate)


Biochemical disturbances in rickets pathogenesis based on a three-stage classification of vitamin D status (symbolized by the sun) and calcium intake (symbolized by a glass of milk).

Vitamin D Status

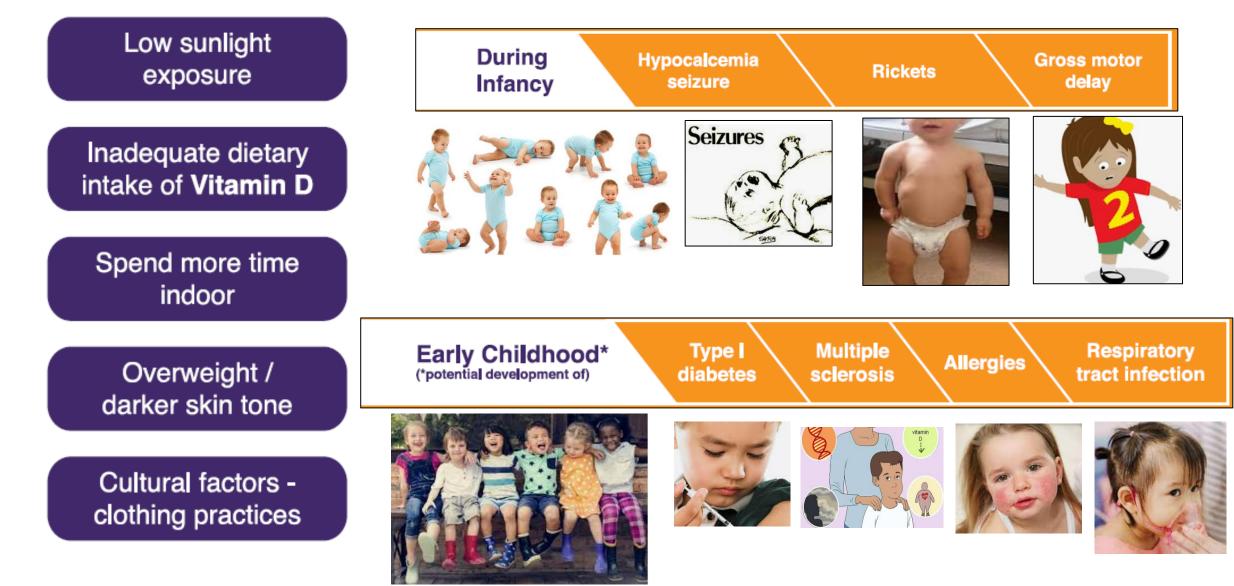
Vit D Status	Vit D Levels (nmol/L) ¹	Vit D Levels (nmol/L) ²	Vit D Levels (nmol/L) ³	
Severe deficiency	<25	<12.5	-	
Deficient	<50	< 37.5	<30	
Insufficient	50-75	37.5-50	30-50	
Sufficient	75-250	50-250	>50	
Preferred	75-150	75-150	-	
Тохіс	>375	>375	>250	

2. Misra M et al. Pediatrics 2008;122;398-417

These are the Contributing Factors

Why?

Where do we usually get Vitamin D?



5 - 30 minutes of sunlight exposure between
10.00am to 3.00pm
at least twice a week **FUN FACT**

Using sunscreen with SPF30 reduces Vitamin D synthesis in the skin by more than 95%

Children might be at risk of Vitamin D Deficiency if they

Implication of Low Vitamin D

	Maintenance V	'itamin D Doses					
	AAP and PES	юм		Endocrine Socie Patients at Risk Vitamin D Defic	for	EFSA and ESPGHAN	lq
Age	Daily Requirement, IUª	Recommended Dietary Allowance, IU	Upper Level Intake, IU	Daily Requirement, IU	Upper Level Intake, IU	Recommended Daily Supplementation, IU	Upper Level Intake IU
0-6 mo	400	с	1000	400-1000	2000	400	1000
6–12 mo	400	c	1500	400-1000	2000	400	1000
1–3 у	400	600	2500	600-1000	4000	None	2000
4-8 y	400	600	3000	600-1000	4000	None	2000
9–10 y	400	600	4000	600-1000	4000	None	2000
11–18 y	400	600	4000	600–1000	4000	None	4000
		Treatment of	vitamin D	deficiency or insu	ufficiency		
Age	e	PES			Endocrin	ne Society ^b	
0-1	1 mo	1000 IU/d for 2–4 wk			2000 IU/d or 50 000 IU/wk for 6 wk		Nk
1–1	I–12 mo 1000–5000 IU/d for 2–4 v		∧vk				
>10	2 mo	mo >5000 IU/d for 2–4 wk					

National Coordinating Committee on Food and Nutrition Ministry of Health Malaysia 2017

RNI

<u> (100</u>

Ministry of Health Malaysia

	Appendix 14.2. Comparison of recommended intake for Vitamin D: RNI Malaysia (2017), RNI Malaysia (2005), and IOM (2011)					
RECOMMENDED NUTRIENT INTAKES	Malaysia (2017)		Malaysia (2005)		IOM (2011)	
for MALAYSIA	Age group	RNI (µg/day)	Age group	RNI (µg/day)	Age group	RNI (µg/day)
	Infants		Infants		Infants	
0 - 12 months	0 - 6 months	10	0 - 5 months	5	0 - 6 months	10
400 IU per day	7 - 12 months	10	6 - 12 months	5	7 - 12 months	10
40010 per day	Children		Children		Children	
	1 - 3 years	15	1 - 3 years	5	1 - 3 years	15
1 Q Voors	4 - 6 years	15	4 - 6 years	5	4 - 8 years	15
<u>1 - 9 Years</u>	7 - 9 years	15	7 - 9 years	5		
600 IU per day	Boys		Boys		Boys	15
	10 - 18 years	15	10 - 18 years	5	9 - 13 years	15
Not achieveing RNI			-		14 - 18 years	15
			-			
(0.5 – 12.9 years)	Girls		Girls		Girls	
Vit D: 94.8%	10 - 18 years	15	10 - 18 years	5	9 - 13 years	15
Vit D: 94.6 %		-			14 - 18 years	15
		-				-
	Men		Men		Men	
	19 - 50 years	15	19 - 65 years	5	19 - 30 years	15
	51 - 65 years	15	51 - 65 years	10	31 - 50 years	15
	> 65 years	20	> 65 years	15	51 - 70 years	15
1mg = 40111					> 70 years	20

268

1mg = 40IU

Poh BK, Wong JE, Lee ST, Chia JSM, Yeo GS, Sharif R, et al. SEANUTS II Malaysia. Public Health Nutrition. 2023;1–36. doi:10.1017/S1368980023002239

Can we get sufficient amount of vitamin D from diet?

Source	Vitamin D content IU = 25 nanograms			
Natural sources				
Salmon, fresh wild caught	~600-1000 IU/100 g_vitamin D ₃			
Salmon, fresh farmed	~100-250 IU/100 g vitamin D_3 , vitamin D_2			
Salmon, canned	~300-600 IU/100 g vitamin D3			
Sardines, canned	~300 IU/100 g vitamin D ₃			
Mackerel, canned	~250 IU/100 g vitamin D ₃			
Tuna, canned	236 IU/100 g vitamin D ₃			
Cod liver oil	~400-1000 IU/5 mL vitamin D ₃			
Shiitake mushrooms, fresh	~100 IU/100 g vitamin D ₂			
Shiitake mushrooms, sun dried	~1600 IU/100 g vitamin D ₂			
Eggyolk	~20 IU/yolk vitamin D ₃ or D ₂			

100g of fresh salmon

14g of sun dried shiitake mushroom

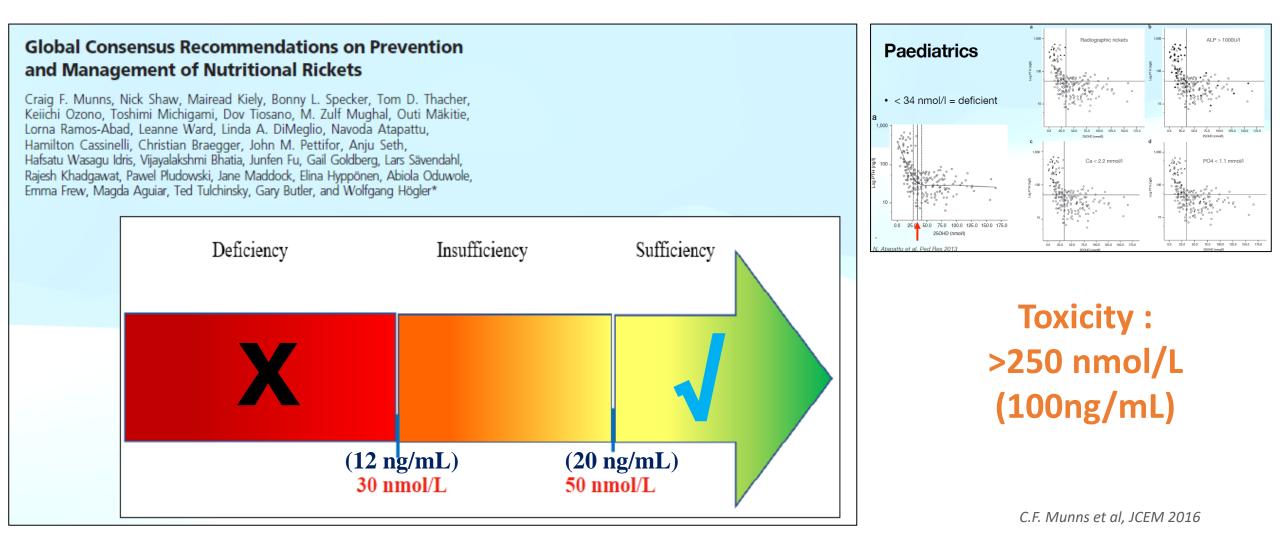
7 packets \rightarrow 1600 IU Vit. D3

Cheese slice (35 IU)

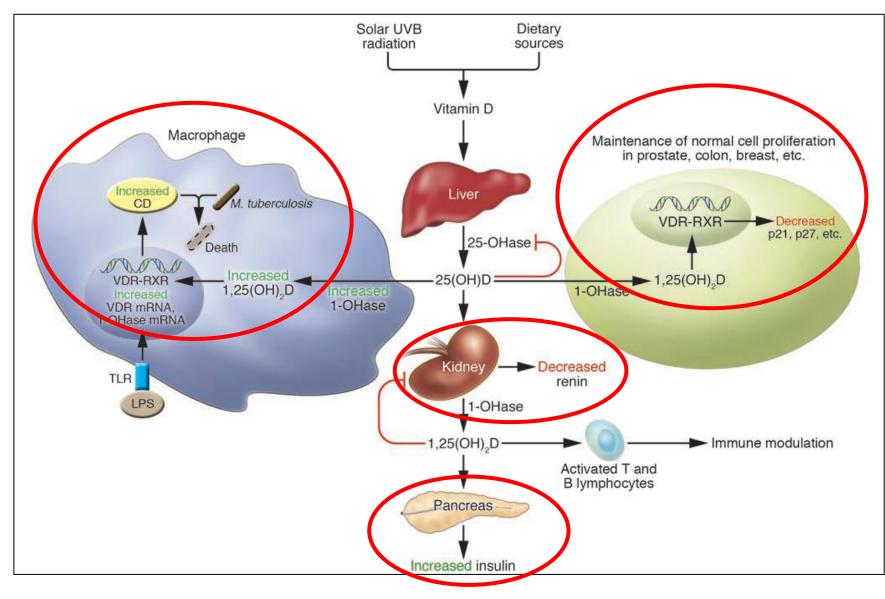
Salmon (600 to 1,000 IU)

500 IU Vitamin D₃ is equivalent to

Egg yolk (20 IU)



Fortified milk (100 IU)



Michael F. Holick, N. C.-F. (2011). Evaluation, Treatment, and Prevention of Vitamin D Deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab, 20.

Global Consensus Recommendations on Prevention and Management of Nutritional Rickets – JCEM 2016

Vitamin D: Non-Skeletal Roles

Vitamin D Effects

- 1. Immunomodulation
- 2. Cellular proliferation
- 3. Cancer prevention
- 4. Hypertension & CVD
- 5. Insulin production

Systematic Review

Preventive Vitamin D Supplementation and Risk for COVID-19 Infection: A Systematic Review and Meta-Analysis

Marina Sartini ^{1,2,*,†}, Filippo Del Puente ^{3,*,†}, Martino Oliva ¹, Alessio Carbone ¹, Nicoletta Bobbio ³, Elisa Schinca ^{1,2}, Luana Giribone ¹ and Maria Luisa Cristina ^{1,2}

Vitamin D supplementation has a protective effect against:

- 1. the incidence of COVID-19 in RCT studies (OR 0.403, 95% IC 0.218, 0.747)
- 2. the incidence of COVID-19 in analytical studies (OR = 0.592, 95% IC 0.476–0.736) and
- 3. in ICU admission (OR 0.317, 95% IC 0.147–0.680).

The doses of vitamin D (cholecalciferol) administered as:

- 1. IU/daily were 5000, 4000, 3200, <1000 and 400;
- 2. IU/weekly were 50,000 and 5600;
- 3. IU/monthly were 100,000, 90,000, 80,000, 52,000, 50,000, 25,000 and 10,000.

Meta-analysis suggests a definitive and significant association between the protective role of vitamin D and COVID-19 **incidence and ICU admission**.

Conclusions

- Two types of Vitamin D: Vitamin D3 and D2
 - (D3 is more potent and effective than D2)
- Two main sources of Vitamin D
 - Sun (UVB 280-320 nm)
 - Food (animal or plant).
- Vitamin D undergoes 2 hydroxylation in the liver and kidney to form active Vitamin D (1,25(OH)2 Vit D).
- 1,25(OH)2 Vit D doubles the absorption of calcium and phosphates.
- Various levels used as cut-off values for Vitamin D Deficiency.
- Risk factors: low sun exposure, inadequate dietary intake.
- Malaysia RNI: 400 unit for infants, 600 unit for children and adults.